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New discoveries challenge the long-held view that aging is

characterized by progressive loss and decline. Evidence for

functional reorganization, compensation and effective

interventions holds promise for a more optimistic view of

neurocognitive status in later life. Complexities associated

with assigning function to age-specific activation patterns

must be considered relative to performance and in light of

pathological aging. New biological and genetic markers,

coupled with advances in imaging technologies, are

enabling more precise characterization of healthy aging.

This interdisciplinary, cognitive neuroscience approach

reveals dynamic and optimizing processes in aging that

might be harnessed to foster the successful aging of the

mind.
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Introduction
The big story in the cognitive neuroscience of aging is the

recent discovery of what appears to be functional reorga-

nization and compensation in the aging brain. Here, we

review several key chapters to this developing story:

neurocognitive aging revealed by functional imaging,

protective factors that mitigate age decline and the emer-

ging socio-affective neuroscience of aging. The backdrop

for these recent discoveries is decades of documentation

of pervasive neurobiological, cognitive and performance

declines with advancing age [1��,2]. The shrinkage of

human brain gray matter volume measured in vivo is

widespread and is especially evident in the lateral pre-

frontal cortex, hippocampus, cerebellum and caudate

nucleus [3,4]. Pervasive white matter loss is especially

prevalent in the prefrontal cortex [3,5,6,7�]. Cholinergic

and dopaminergic declines are particularly pronounced,

and compromise attentional and memory processes

[8��,9]. Thus, until relatively recently [10], the dominant
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view of aging has been one of pervasive, irreversible

decline.

Neurocognitive aging viewed from the brain
scanner
Accordingly, a longstanding model for neurocognitive

aging was the lesioned brain [10]. Based on this model,

the initial assumption was that performance deficits arose

from diminished contributions of specialized brain

regions and that older adults (typically aged 60 years

and older), being atrophic and less able to engage the

relevant neural circuitry, would show less brain activation

than younger adults (typically aged 18–30 years) perform-

ing the same task. Initially, studies focused on these

patterns of underactivation [11], and it remains a frequent

result in memory, cognitive control and executive proces-

sing tasks [12–14]. Interestingly, these patterns might

reverse if a strategy is provided, such as instructions that

focus attention on the meaning of words, which can

facilitate later memory [15]. This result offers support

for behaviorally derived theories suggesting that age

differences in performance sometimes reflect a failure

of older adults to self-initiate the use of controlled,

effortful processing strategies to support their perfor-

mance.

Underactivations fit well with a brain-damage model of

aging; the largely unanticipated result from functional

neuroimaging is overactivation, or greater brain activity in

older than in younger adults. Age-related, region-specific

overactivation is now well documented for a wide range of

processes, including executive functions [16–19]; motor

control [20,21]; and episodic [22��,23,24,25��,26], auto-

biographical [27] and working memory [24,28] (see [1] for

reviews of age-specific activations reported before 2003).

Do these overactivations reflect compensation? Several

lines of evidence support this possibility. First, older

adults show more regions of activity, including cross-

hemispheric homologous loci, on tasks that show minimal

adverse performance effects due to age — such as auto-

biographical memory and verb generation [18,27] — and

when performance levels, effort exerted or both are

matched [21]. In addition, a recent study using repetitive

transcranial magnetic stimulation (TMS) interference

reported that retrieval was impaired in young adults when

unilateral TMS was applied, whereas for older adults left

or right TMS impaired performance, suggesting that both

hemispheres contributed to performance in the older but

not in the younger group [29��]. Second, activation levels

have been shown to correlate positively with overall

performance levels [20,26,30–32] in older adults. In some
Current Opinion in Neurobiology 2005, 15:245–251



246 Cognitive neuroscience
cases, when subgroups of elderly individuals are exam-

ined, region-specific overactivations characterize the

groups that perform best [33,34]. Third, overactivations

have been linked to trial outcome using event-related

functional magnetic resonance imaging (fMRI); greater

activity in prefrontal regions, especially lateral and infer-

ior prefrontal sites, has been found in older adults than in

young adults in an encoding task when items are success-

fully remembered [22��,25��], and in successful trials in

tasks requiring response inhibition [16,17]. Fourth, in

some studies this prefrontal overactivation is accompa-

nied by medial temporal lobe underactivation [25��,35],

which has been taken to support the view that strategic

processes mediated by the prefrontal cortex compensate

for declining medial temporal lobe function with age.

Although a compensation interpretation of overactivation

in older adults is an exciting and optimistic one, it is

clearly not the whole story. For example, even if over-

activation is compensatory, it might have a hidden cost.

To the extent that older brains engage more neural

circuitry at lower levels of task demand than do younger

adults, seniors rely more on ‘cognitive reserve’ [32] and

are thus more likely to reach a limit on the resources that

can be brought to bear on task performance [36]. Reuter-

Lorenz and Mikels [37] have referred to this as

CRUNCH, compensation-related utilization of neural

circuits hypothesis.

Furthermore, the functional significance of overactivation

in seniors might vary depending on the locus of activation

and the task context. For example, there are indications

that some inhibitory interactions between brain areas

might break down with age [38], in which case over-

activation could reflect the nonselective recruitment of

disinhibited regions [15]. Dedifferentiation is another

possible account of overactivation, as suggested by a

recent investigation of specificity in the ventral visual

cortex. Unlike younger adults, who show discrete, anato-

mically and functionally separable peaks of activation for

faces, places and words, older adults showed less differ-

entiation of such material-specific subregions, activating

all regions of interest, regardless of material type [39��].
These human results parallel the breakdown of selective

tuning profiles for individual neurons recorded in the

monkey visual cortex [40] and in the rat somatosensory

cortex [41]. A breakdown in the integrity of perceptual

representations could increase neural noise [42] and

stimulate a cascade of compensatory adjustments at

subsequent stages of processing downstream.

Overactivations might also indicate inefficient proces-

sing, as suggested by the results from the Stroop task,

in which older adults show greater activity in perceptual

areas and in the anterior cingulate in conditions that elicit

conflict [43]. Likewise, one study found that, compared

with young adults and older adults with good memories,
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older adults with poorer memories showed more wide-

spread activations during retrieval attempts. This out-

come suggests that inefficient or compensatory search

strategies might attempt to overcome poorer encoding

[23]. Areas of overactivation have also been reported in

patients with Alzheimer’s disease (AD) or mild cognitive

impairment (MCI) compared with nondemented adults.

Again, the particular locus of overactivation varies accord-

ing to the task that is performed, and the significance of

this additional recruitment is not entirely clear. On the

one hand, prefrontal overactivation has been associated

with better memory performance by AD patients [26], yet

on the other hand, an analysis focusing on medial tem-

poral lobe structures in MCI patients found that, despite

similar performance, subjects with the most structural

atrophy showed the largest extent of overactivation, and

that overactivation was predictive of longitudinal decline

[44�]. A tempting interpretation is that overactivation

might support good performance in the short term but

could also be a sign that an individual is compensating for

a progressive pathology and therefore predicts future

decline. However, it is important to note that the regions

of interest for these two studies [26,44�] were quite

different, and that a great deal more work is needed to

establish the relationships among performance, activation

and structural differences, and longitudinal change.

Some of the most important — and complicated —

questions for the cognitive neuroscience of aging lay in

linking age differences in activation patterns to age

differences in cognition (Figure 1 and Table 1). When

do overactivations reflect beneficial compensatory proces-

sing, and what are they compensating for? Are there brain

and cognitive processing changes for which compensation

is not possible? Does bilateral homologous overactivation

differ in origin and function from other forms of over-

activation in seniors? To what extent are age differences

in brain activation and performance modifiable by pro-

viding older adults with the ‘correct’ strategy or by other

means?

Preservation and reversal
Evidence is mounting for the importance of good cardi-

ovascular health and a low-calorie diet as means of main-

taining — and even returning to — youthful states of

brain and behavior [45]. The largest benefits are on higher

level, controlled, executive functions, which show the

largest changes in normal aging. Critically, these are not

only correlational findings; a randomized intervention

study found a return to young adult-like patterns of

behavior and brain activation for those assigned to car-

diovascular training, benefits that were not found for

those assigned to other forms of exercise [46�,47].

Do cognitive training programs produce similar benefits?

Practice, whether through a lifetime of experience or in

some instances short term intervention regimens, can
www.sciencedirect.com
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Figure 1

APOE,
presenilin

risk for
other diseases

Protective APOE
2/2 allele,
‘longevity genes’

Successful aging

Dementia and decline

Hypertension,
diabetes

Cardiovascular training,
caloric restriction

Atrophy,
white matter damage,

neurotransmitter dysfunction

Compensation,
functional plasticity

‘Use it or lose it’
social and cognitive

isolation after retirement

Cognitive training
programs, active
involvement

Depression, personality
changes in dementia

Positive
emotional bias

Current Opinion in Neurobiology

Factors influencing neurocognitive aging. The figure illustrates several factors influencing whether aging will be successful or lead to impairment.

This list is not intended to be comprehensive but instead summarizes factors of recent interest that are highlighted in the text. Abbreviations:

APOE, apoliprotein E.
lead to improved performance in older age. For example,

bilingual older adults, having developed the skill of

flexibly negotiating two language systems across their

lifetime, show smaller age-related performance declines

compared with those in monolinguals [48�]. Again, these

benefits occurred for a task with high demands on execu-

tive control. Programs founded on basic techniques from

cognitive psychology — in particular, temporally spaced

practice — show substantial and long-lasting benefits to

memory performance in older adults, even those with AD

[49,50�].

Neuroimaging data might inform our understanding of

how these behavioral training programs exert their effect.

Do they result in older adults returning to a younger

adult-like state, as in cardiovascular training, or do they

lead to compensation and the adoption of different stra-

tegies and activation patterns? One study found that even

successfully trained older adults activated posterior but

not frontal regions to the same degree as young adults,

suggesting alternative strategies and deficient engage-
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ment of higher-level processing, even after training. By

contrast, another investigation found equivalent practice

effects and neural activity reductions for young adults,

older adults and even AD patients [12,51]. However,

besides the general need for more studies to explore this

question, there is an important temporal gap; neuroima-

ging studies thus far have focused on short-term, within-

session training benefits, whereas behavioral studies often

examine training benefits over weeks and months. The

neural correlates of these long-term changes remain a

largely open but important question.

A positive side to aging?
Despite the losses that accompany normal aging, it is

increasingly evident that older adults have a more posi-

tive emotional bias than their younger counterparts.

Several studies show that older adults give preferential

processing to emotional information, particularly positive

information, in attention and memory tasks [52].

Although these differences might reflect age-related

changes in social and emotional goals, there are some
Current Opinion in Neurobiology 2005, 15:245–251
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Table 1

Age differences in activation: impairment or compensation?

Age-specific pattern Interpretation Hypothesized mechanisms Candidate ’diagnostic’ criteria Examples

Impairment Circuitry dysfunction Linked to poor performance [13–15]

Region-specific atrophy Correlates with structure

Poor strategy use Might be reversed with instructions

Compensation Strategic or neural

adjustments to local

processing inefficiency

Linked to good performance

Overactivation correlates with

regions of underactivation

activation elsewhere in the brain

Deactivating TMS impairs performance

[18,25��,29��,35]

Strategic or neural

adjustments to processing

inefficiency elsewhere

in the brain

Impairment Disinhibited or

nonselective recruitment

Linked to poor performance

Deactivating TMS improves

or has no effect on performance

[23,39��,43,44�]

Strategic or neural

processing inefficiency

Selectivity breakdown or

dedifferentiation

Nonfunctional activity

This table summarizes the current state of knowledge pertaining to the two major patterns that characterize the results from functional

neuroimaging studies comparing younger with older adults and lists several reports that exemplify these results. Underactivation refers to

less activation in regions of interest in older relative to younger adults, and overactivation refers to the opposite pattern.
indications that neural mechanisms mediating affective

information processing might also change with age [53].

One fMRI study indicated decreased processing of nega-

tive emotional scenes by older adults; relative to younger

adults, older adults gave lower arousal ratings and showed

less amygdala activation to negative emotional pictures,

whereas there were no age differences in subjective or

activation responses to positive images [54�]. However,

the role of neural decline in these effects is unclear in

light of other data suggesting that decreased processing of

negative information might be specific to AD [55].

Conclusions and future directions
The question of how to divide aging phenomena into

categories of healthy, normal or disease-related remains a

difficult but important goal in neuroscience (e.g. the

upcoming AD Neuroimaging Initiative sponsored by

NIH [5,6,56]). Many recent advances point to a medial

parietal-frontal cortex network associated with reduced

metabolism in AD and genetic risk [57]. A newly devel-

oped compound identifying amyloid plaques, the hall-

mark of AD, heavily tags these regions [58��], and new

methods of analyzing resting-state fMRI data suggest

strong functional connectivity with medial temporal

regions, including the hippocampus [59]. This network,

which is implicated in memory processing, also shows age

disruptions in activity during memory-related tasks that

are exacerbated by AD [60��].
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What lies ahead for aging research? The interdisciplinary

approach taken with AD might be a model for improving

our understanding of normal and healthy aging. We have

highlighted emerging patterns in the neuroimaging of

aging — under- and over- activations by older adults, the

potential reversal of age declines via training and health

improvements, and the influence of emotion — and

enduring questions. What is the short- and long- term

significance of age differences in activation patterns? How

do training programs and emotional influences have their

effects? These will be joined by new questions, with

genetic and personality factors and circadian influences

probably next on the horizon.

New technologies have developed with these new ques-

tions, including a better understanding of age differences

in the hemodynamic response, and methods to enable

increasingly detailed structural images [61–63,64��]. We

expect that neuroimaging methods will become increas-

ingly integrated with behavioral, genetic and pharmaco-

logical approaches to investigate not only disease

processes but also the normal individual differences that

underlie successful aging.

These future directions share an important feature with

the current focus of the field: a shift from the dismal

characterization of aging as an inevitable process of brain

damage and decline. Instead, the emerging story from
www.sciencedirect.com
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cognitive neuroscience is that aging can be successful,

associated with gains and losses. It is not necessarily a

unidirectional process but rather a complex phenomenon

characterized by reorganization, optimization and endur-

ing functional plasticity that can enable the maintenance

of a productive — and happy — life.
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